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Abstract. Two groups (old and new) of symmetries and their Lie algebra properties for 
the Kdvand cylindrical Kdvequations are unified and extended to the general Kdv equation. 

1. Introduction 

As is well known, there are two groups (old and new) of symmetries for the K d v  

equation (Ibragimov and Shabat 1979, Chen et al 1982) and two groups of symmetries 
for the cylindrical K d v  equation (Chen and Zhu 1984, Olver 1980). In Chen and Zhu 
(1984), the authors pointed out, without proof, that these symmetries satisfied a Lie 
algebra. Recently, Li and Zhu (1985) gave a proof for the K d v  equation and obtained 
some more results. In  this paper, we will unify and extend these results for the K d v  

and cylindrical K d v  equations to the general K d v  equation. 
This paper is organised as follows. We introduce some notation and some well 

known results in 0 2 ,  and then in $0 3 and 4 we find the strong symmetry (recursion 
operator) and two groups of symmetries for the general K d v  equation by using different 
methods. Finally, we prove that these symmetries satisfy a Lie algebra. 

2. Notations and lemmas 

Let U be a set of functions such that U E U and the derivatives of U of any order with 
respect to x and t tend to zero rapidly as 1x1 +E. In  what follows, we always assume 
that U E  U. 

Let G ( x ,  t ,  U )  = G ( x ,  t ,  U ,  U , ,  . . .). G can be a function or an operator, and G ’ (  u ) [ r ]  
(or simply, G ‘ [ r ] )  is called the derivative of G in the direction r :  

where 4 is an operator and K is a function. 
We consider the evolution equation 

U ,  = K ( x ,  t ,  U ,  U , ,  . . .) (2.3) 
which depends on x and t explicitly. 
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Definition. a ( x ,  t ,  U )  is called a symmetry of (2.3) if a satisfies the linear equation 

d a / d t  = K ’ [ ( T ]  

where d a / d t  is the total derivative and U satisfies equation (2.3). 
Sometimes we call the vector field 

x = c T ( U ) ( d / d U )  (2.4) 

U = U(U”, E )  (2.5) 

or the flow generated by X 

a symmetry of (2.3) (Fuchssteiner and Oevel 1982, Stramp 1984). Flow u ( u , ,  E )  is the 
solution of the equation 

d u / d e  = a( U )  

and satisfies the initial condition u ( u o ,  0) = uo .  Hence, the flow ( 2 . 5 )  (or X )  leaves 
equation (2.3) invariant. In fact, this invariant property can also be used as the 
definition and  we can extend the definition to the general differential equation 

(2.6) F ( x ,  t ,  U, U, UT, U,, U,, U,, . . .) = 0 

i.e. (8, a) is called a symmetry of (2.6) if (8, a )  satisfies 

F’[e,o]=o 

where 8 and a correspond to U and U respectively (Fuchssteiner and Oevel 1982, 
Stramp 1984). 

Definition. The operator @ is called a strong symmetry or a recursion operator of (2.3) 
if it maps the symmetry to the symmetry of (2.3), i.e. if a is a symmetry of (2.3), then 
@(T is also a symmetry of (2.3). 

Definition. The operator @ is called a hereditary symmetry if 

@ ‘ [ @ ~ ] b  - @’[Obla = @ ( @ ’ [ a ] b  - @‘[ b ] ~ )  

is valid for any functions a and b. 

It is not difficult to prove the following lemmas (Oevel and Fokas 1984, Fuchssteiner 
1981). 

Lemma 1. (T is a symmetry of (2.3) if and only if 

( T ’ [ K ] - K ’ [ a ] + a ( T / a t = 0  

where a u / a t  is the partial derivative of (T to t .  

Lemma 2. I f  the operator @ satisfies 

d@/d t  = [ K ’ ,  a] 
( [ K ’ , Q , ] =  K ‘ o @ - @ o  K ’ ) ,  i.e. 

@’[ K ]  + a @ / a t  = [ K ’ ,  @] 

then Q, is a strong symmetry of (2.3). 
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Lemma 3. @ is a hereditary symmetry if and only if 

@.'[a, b ]  + [@a, @ b ]  = @([@a, b ]  + [ a ,  @ b ] )  

for any functions a and b. 

3. Strong symmetry of the general Kdv equation 

We consider the general K d v  ( G K d V )  equation 

U, + U,,, +6uu, + 6f( t ) u  - x(f'+ 12f2) = O  

where f( t )  is an arbitrary function of 1. When f= 0, it is the K d v  equation 

U, + uXXx + 6uu, = 0 

and when f( 1 )  = 1/  121, it is the cylindrical K d v  equation 

U, + U,, +6uu,  + u / 2 t  = 0. 

When f =  CO (CO is an arbitrary constant), (3 .1)  is reduced to 

U, + U,,, + 6 UU, + 6 CO U - 1 2 COX' = 0. 

In Tian Chou (1985), we have found the Lax pair for the G K d v  equation (3 .1):  

a=( k - U  0 ' ) d x + (  U, + 2f - i 4 k + 2 u ) )  dt  (3 .2)  
U,, - ( k  - ~ ) ( 4 k  + 2 ~ )  -(U, + 2f) 

where k =xf( t )+Ag(t) ,  A is an arbitrary constant, and g = 
exp(-j 12f dt ) (g '+  12gf=O).  Hence, (3.1) can be considered as the completely 
integrable condition of the following linear equations: 

U,, = ( k  - U ) U  

U, = -(4k + ~ u ) u ,  + ( U  - 4 k ) , ~ .  
(3 .3)  

To obtain the strong symmetry, we look for the symmetry of equation (3 .3 )  first, 
i.e. the solution 6 and U of the equations 

6,  = ( k  - u ) 6  - (+U 

6,  = - (4k  + 2 u )  6, - 2UUX + (+,U + ( U - 4 k )  %6. 
(3 .4 )  

It can be shown that 

6 = uD-'u2 (3 .5 )  

c = -2( u 2 ) ,  = -4uu, (3 .6)  

are the symmetries of (3 .3) ,  where D = d/dx, D-' is the inverse operator of D. 
Furthermore, we look for the flow generated by 

X = 6 a / a u  + a /&  (3 .7 )  

dv/ds  = uD-'u2 d u / d s  = -2( u ~ ) . ~  (3 .8 )  

i.e. the u ( u 0 ,  E )  and u(u , ,  uo, E )  which satisfy the equations 
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and the initial conditions u(u , ,O)  = uo. u ( u o ,  U,, 0) = uo. In a similar way to Stramp 
(1984), we have 

U =  uo(l+&D-’Ui) (3.9) 

U = u o + 2 [ l n ( l + ~ D - ’ u ~ ) ] . ~ . ~ .  (3.10) 

(3.10) can be considered as a Backlund transformation of the c K d v  equation and  the 
extension of the Backlund transformation of the K d v  equation (Stramp 1984, Weiss et 
a1 1983). 

Substituting a = -2( u * ) ~  = -4uu,( U‘ = - fD-’a)  into 

vy, = ( k  - U)U 

we obtain 

D a  + 4u: + 2 u D - l ~  = 2kD-’a’. 

Differentiating the last equation with respect to x and substituting k = xf+ Ag, 
U,, = ( k  - U )  U into it, we obtain 

D ’ a + 4 ~ a +  2( U, -f)D-’(+ =4(xf+ Ag)g 

i.e. 

( 1 / g ( t ) ) [ D2 + 4( U - x f )  + 2 ( U, - f )  D - ’ ] = 4A a. 

Suppose 

CP = ( I / g ) [ D’ + 4( U - x f )  + 2( U, - f )  D- ‘ I .  
Since 

@a = 4ha d a / d t  = K’[a] 

is a completely integrable system, the completely integrable condition 

d@/d t  = [ K ’ ,  @] 

(3 .11 )  

is established. Therefore @ is a strong symmetry of (3 .1 ) .  In  particular, when f =  0, 
g = 1 and @ =  D2+4u+2u,D-’ ,  this is a well known strong symmetry of the K d v  

equation, whenf=  1 /  124 g = 1 /  12t and @ = 12t[D2+4( U - x /  12t) +2(  U, - 1/12t)D-’], 
this is a strong symmetry of the cylindrical K d v  equation (Fuchssteiner 1981). 

It is not difficult to check that CP is a hereditary symmetry as well. Therefore, a 
hierarchy of the G K d v  equation is generated by CP and (3 .1 ) :  

U ,  = K, K ,  = Q m K  m = 0 , 1 , 2 , .  . . (3.12) 

We point out that there is a transformation which links the K d v  equation v, + uccc + 
and CP is the strong symmetry of all of equations (3.12). 

6uu, = 0 to G K d v  equation (3 .1 )  (Calogero 1985): 

U = g v + x f  ,$ = xg”2 r = I g”’ dt. (3 .13)  

But this transformation could not transform K d v  equations of high order to the general 
K d v  equations of high order. We can derive the strong symmetry, symmetries and  the 
Lie algebra relations of the G K d v  equation by using (3.13).  In this paper, we use a 
different method. 
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4. Two groups of symmetries of c K d v  equations 

(4.1) 

Since zero can be considered as a trivial symmetry of the GKdv equation (3.1), naturally 
we consider 

U = ( l /g ) (h( t )u ,+  m ( t ) )  

(+ = ( 1 / g)[ h ( t ) (  U, -f) + I (  t>I 

du /dr  = K’[u] 

or 

as a symmetry of (3.1). Substituting (4.1) into 

i.e. 

d u  f d t  = -( uxXx + ~ U U ,  + ~ U , U  + 6 f ~ )  

we have the following conditions on h and I :  
h’+6fh +61 = O  

I’ + 1 8 f l -  6f2 h - h ’f = 0. 
Then we have 

1 = cog2 

and 

h = g”’( C1 + 6C0 1 g3/2 dt)  

(CO and CI are arbitrary constants). Therefore 

U = g-lI2( C, + 6C, g3I2 dt)(u, -f) + Cog.  

If we take CO = 0, C, = 1, we obtain 

If we take CO = 4, C, = 0, we obtain 
uo= ( l / Jg ) (ux  -f). 

,. 
To = 3g-1/2 g3I2 dr( U, -f) + t g .  J 

Therefore, two groups (old and new) of symmetries are generated by U,, r,, and 0: 
U, = @“U, 

7, = (DflT,) n = 0 , 1 , 2  , . . . .  
n = 0,1 ,2 , .  . . 

In particular, for the Kdv equation, we have U, = K ,  ( n  = 0,1 ,2 , .  . .). 

5. Lie algebra of symmetries of the c K d v  equation 

Theorem. U,, and r, ( n  = 0, 1,2, . . .) satisfy a Lie algebra 

[ a m ,  u n l  = O  
[am, 7n1=(2m+1)(+m+n-i m + n Z l  
[r,, 7 , , ] = 2 ( m - n ) 7 , , , + . - 1  m + n > l  

( [ a , b ] = a ’ [ b ] - b ’ [ a ] , m , n = 0 , 1 , 2  , . . .  ). 
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To prove this theorem, we need the following lemmas. 

Lemma 4. @ ' [ u , ] = [ u ~ , @ ] = u ~ ~ @ - @ ~ ~ ~ .  

Proof: Since 

@'[CO] 4Co + 2 ( ~ o ) , D - '  

= g-3'2[4( U, - f )  + 2u, ,D-']  

@ 0 U; = @ 0 ( l / J g ) D  

= g-3/2[ D3 + 4( U - xf)D + 2( U, -f)] 

who @ = (l/Jg)DO @ 

= g-3'2[D3+4(~  -xf)D+6(uX - f ) + 2 u X , D - ' ]  

then 

@'[(To] +@ 0 (+A- U' 0 0 @ = 0. 

@ [ g o ,  a1 = [U,, @a1 

It is not difficult to check that (5 .5 )  is equivalent to 

for any function a and we say that 0 commutes with go. Since @ is a hereditary 
symmetry, according to lemma 3, we can prove that @ commutes with un ( n  = 1 , 2 ,  . . .) 
as well. Therefore 

@'[Um]+@ 0 U:, --U:, 0 @ = o  m = 0 , 1 , 2  , . . . .  

(5.4) 

Proof: When m = 1 

[ ( T I ,  ig] = g-3'2( U,,, + 6uuY - 6xfuX - 6fu + 6xf2)'[+g] 
- I/2 = g  ( 3 U X - 3 f ) = 3 U o  

then ( 5 . 5 )  is established for m = 1 .  
Suppose ( 5 . 5 )  is established for m = k - 1 ,  i.e. 

[ Uk - 1 ,  481 = - l[ig] = (@k-'ffO)'[fg] = ( 2 k  - l ) U k - *  

Notice that @'[fg] = 2 and we have 

[ U k , l g ] = ( @ a k - l ) ' [ i g ] = @ ' [ t g ] a k - l  + @  UL-l[fg] 

= 2Uk-I + @ [ U t - ,  9 fgl 
= 2(Tk - 1 f ( 2 k  - 1 ) (Tk - I 

=(2k+l ) (Tk- l  

which implies (5.5). 

Lemma 6. 

[U,,,, @"ig] = ( 2 m  + I ) U , , , + , , - ~ .  
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Boo$ According to lemma 5 ,  this equation is valid for n = O .  Assume that it is 
established when n = k - 1 and let us prove it for n = k. In fact, by lemma 4, 

[Um, @"g]= U&[@k;g]-(@k;g)'[Um] 
= aL[@k;g] -@'[U,]@k-';g -@(@k-l;g)'[am] 

= (+L[@kfg] - a&[@k+g] +@c7&[@k-';g] - @(@k-';g)'[Um] 

= @ [ U m ,  Ok-lfg] 

=(2m + l)@'am+k-z 

= (2m + 1 ) ~ , + ~ - ' .  

(5.7) 

Proof: Since 

@[fgl=2(ux - x f ) + x ( u x - f )  

(@(fg ) ) ' [k l=  g 
which is ( 5 . 7 )  for m = 1. Assume it is established for m = k - 1, we prove that it is valid 
for m = k. In fact 

(@k;g)'[;g] = @'[;g]@k-';g + @(Qk-';g>'[fg] 
- -2Qk-';g+2(k- l)@'-'fg 

= 2kQk-';g. 

which implies (5.7). 

the following lemma. 
In a similar way to the proof of lemmas 7 and 8 in Li and Zhu (1985) we can prove 

Lemma 8. 
[Qmfg, on4g]= 2( m - n)@m+n-'fg. 

Proof of the theorem. 
(i) (5.1) is the direct result of lemma 4. 
(ii) According to lemma 6 

[ a m ,  T ~ I = [ u ~ ,  3ham+@";gI ( h  = g-'I2 g3/' d r )  

= [U,, @"tg] = ( 2 m  + I ) U , , , + ~ - ~ .  

(iii) According to lemmas 6 and 8 

[ T m ,  7 , ] = [ 3 h U , + ~ m t g , 3 h a n + ~ n t g ]  

=3h[um, @"fg]+3h[@.";g, ~ , ] + [ @ " ~ g , @ " f g ]  

= 3 h ( 2 m + l ) ~ , + , - ~  -3h(2n+ 1 ) ~ , + ~ - ~ + 2 ( m - n ) @ ~ + ~ - ' ~ g  

= 2 ( m  - n)(3ham,,-, +@"+"- 'fg) 

This completes the proof. 
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The above results can be extended to the equation 

U, + U, ~~ + 6 U U, + 6f( t ) U - x ( f ’  + 1 2f2) - ( I’ + 1 2 If) = 0 

where f (  t )  and I (  t )  are arbitrary functions of t. 
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